
Matrix Inversion and Condition Estimation with
Triangular Factors

Jurjen Duintjer Tebbens

joint work with

Miroslav Tůma

Institute of Computer Science

Academy of Sciences of the Czech Republic

Joint French-Czech Workshop on Krylov Methods for Inverse Problems,

Prague, July 19, 2010.

J. Duintjer Tebbens, M. Tůma 2

Outline

1. Methods of matrix inversion based on triangular factorization

2. Balanced Incomplete Factorization

3. Condition estimation with balanced factorization

J. Duintjer Tebbens, M. Tůma 3

1. Matrix Inversion

The main consensus is that explicit computation of the inverse of a matrix
should be avoided whenever possible. For example, to solve a linear
system

Ax = b,

it is very inefficient to search for the matrix A−1 if only the vector A−1b is
needed.

However, in particular applications including image reconstruction or
signal processing it may not be possible to circumvent the explicit
computation of the inverse.

In the popular LAPACK and Matlab software, matrix inversion is done with
the help of a triangular decomposition and in the following we will restrict
ourselves to this strategy.

J. Duintjer Tebbens, M. Tůma 4

1. Matrix Inversion

Consider the Cholesky decomposition

A = LLT

for a symmetric positive definite matrix or the LU decomposition

PA = LU

for general matrices, where L is unit lower triangular, U is upper triangular
and P is a permutation matrix.

A survey of properties of methods for matrix inversion based on triangular
decompositions is given in [Du Croz, Higham - 1992]. In the following we
summarize the main results on implementation and stability. We start with
the inversion of a unit lower triangular matrix L.

J. Duintjer Tebbens, M. Tůma 5

1. Matrix Inversion

Like in Gaussian elimination, the computation can be organized in several
ways, according to the ordering of the involved loops:

1. Compute L−1 one column at a time

2. Compute L−1 one row at a time

3. Compute L−1 by outer product updates

An example of 1. is the next algorithm („Column-wise Inversion I")

for j = 1 : n

X(j, j) = L(j, j)−1

X(j + 1 : n, j) = −X(j, j) ∗ L(j + 1 : n, j)

L(j + 1 : n, j + 1 : n)X(j + 1 : n, j) = X(j + 1 : n, j) (forward substitution)

end

J. Duintjer Tebbens, M. Tůma 6

1. Matrix Inversion

X is the computed inverse of L. Computational costs are dominated by
the n forward solves.

The algorithm can be rearranged to avoid the forward solves
(„Column-wise Inversion II"):

for j = n : −1 : 1

X(j, j) = L(j, j)−1

X(j + 1 : n, j) = X(j + 1 : n, j + 1 : n) ∗ L(j + 1 : n, j)

X(j + 1 : n, j) = −X(j, j) ∗X(j + 1 : n, j)

end

Now there are n matrix-vector multiplications, where the matrix is
triangular. This is in general faster than the previous algorithm.

J. Duintjer Tebbens, M. Tůma 7

1. Matrix Inversion

Concerning stability, Column-wise Inversion I is derived from the equation

LX = I

and the computed inverse X̂ therefore satisfies a right residual
componentwise bound

|LX̂ − I | ≤ cnǫ|L||X̂|+O(ǫ2),

where ǫ is the machine precision [Du Croz, Higham - 1992].

Column-wise Inversion II, on the other hand, is derived from the equation
XL = I and the computed inverse X̂ therefore satisfies a left residual
componentwise bound

|X̂L− I | ≤ cnǫ|L||X̂|+O(ǫ2),

see [Du Croz, Higham - 1992].

J. Duintjer Tebbens, M. Tůma 8

1. Matrix Inversion

For all of the three strategies

1. Compute L−1 one column at a time

2. Compute L−1 one row at a time

3. Compute L−1 by outer product updates

there is a variant derived from XL = I and a variant derived from LX = I .

The first always satisfy a left residual componentwise bound (but not
always a right one) and the second a right residual componentwise bound
(but not always a left one) .

Be aware: Block versions of these algorithms are generally faster, but do
not necessarily satisfy this rule! In some cases they do not satisfy a left
residual componentwise bound and not a right residual componentwise
bound either; they are unstable.

J. Duintjer Tebbens, M. Tůma 9

1. Matrix Inversion

Now we proceed to inversion of a general matrix A with triangular
factorization

PA = LU,

where L is unit lower triangular, U is upper triangular and P is a
permutation matrix. Without loss of generalization we will discard P .
Perhaps the most frequently described method is:

for j = 1 : n

solve Axj = ej with the given LU decomposition

end

The method has the disadvantage that the factors L,U are needed during
the whole computation and can not be overwritten. It is clearly derived
from AX = I and, as expected, satisfies a right componentwise bound,

|AX̂ − I | ≤ cnǫ|L||U ||X̂|+O(ǫ2).

J. Duintjer Tebbens, M. Tůma 10

1. Matrix Inversion

A second method, used in LAPACK, is:

compute U−1

solve for X the equation XL = U−1

The method is derived from solving XLU = I and thus satisfies a left
componentwise bound,

|X̂A− I | ≤ cnǫ|L||U ||X̂|+O(ǫ2),

under the assumption, however, that U−1 is computed with an
implementation that guarantees a left componentwise bound for U−1.
Otherwise, we can only obtain weaker bounds.

J. Duintjer Tebbens, M. Tůma 11

1. Matrix Inversion

Yet another method follows from solving

UXL = I

for X .

It enables overwriting L and U with X and thus is efficient with respect to
storage costs. Computational costs are dominated by matrix-vector
products, making it the fastest of the presented methods.

However, it only satisfies a „mixed" componentwise bound,

|UX̂L− I | ≤ cnǫ|L||U ||X̂|+O(ǫ2).

Right or left componentwise bounds for this method are weaker than for
the previous methods.

J. Duintjer Tebbens, M. Tůma 12

1. Matrix Inversion

Finally, we can do the following straightforward computation:

compute U−1 and L−1

form X = U−1L−1

This methods needs no temporary storage at all. However, the best
obtainable left componentwise bound is

|X̂A− I | ≤ cnǫ|L||U ||L−1||U−1|+O(ǫ2),

under the assumption that both U−1 and L−1 are computed with an
implementation that guarantees a left componentwise bound for U−1 resp.
L−1. Analogously we have

|AX̂ − I | ≤ cnǫ|L||U ||L−1||U−1|+O(ǫ2),

under the assumption that both U−1 and L−1 are computed with an
implementation with a right componentwise bound for U−1 resp. L−1.

J. Duintjer Tebbens, M. Tůma 13

1. Matrix Inversion

Summarizing,

1. There are many implementations of matrix inversion based on
triangular decomposition

2. The implementations may differ significantly in computational and
storage costs and in stability properties

3. For stability, it is important to choose the correct variants in
implementations that exploit inversion of triangular matrices

4. The stability of block versions can be much worse than their point-wise
counterparts.

J. Duintjer Tebbens, M. Tůma 14

2. Balanced Incomplete Factorization

Bru, Cerdán, Marín and Mas introduced an LU-type factorization called
Inverse Sherman-Morrison (ISM) decomposition (SISC 2003), based on
the Sherman-Morrison formula

(A+XY T)−1 = A−1 −A−1X(Ik + Y TA−1X)−1Y TA−1,

valid for A ∈ Rn×n and rectangular rank-k matrices X, Y ∈ Rn×k , k ≤ n.

Assume a given, general nonsymmetric matrix A can be written as

A = A0 +
n
∑

k=1

xky
T
k

for a non-singular matrix A0 and two sets of vectors (xk)
n
k=1 and (yk)

n
k=1

in Rn.

J. Duintjer Tebbens, M. Tůma 15

2. Balanced Incomplete Factorization

By repeated application of the Sherman-Morrison formula we obtain the
identity

A−1 = A−1
0 −A−1

0 UA0
D−1

A0
V T
A0

A0
−1,

where the columns of UA0
and VA0

are computed through

uk = xk −
k−1
∑

i=1

vTi A
−1
0 xk

ri
ui, vk = yk −

k−1
∑

i=1

yTk A
−1
0 ui

ri
vi,

the denominators ri are given by

ri = 1 + yTi A0
−1ui = 1 + vTi A0

−1xi, i = 1, . . . , n.

and

DA0
= diag(r1, . . . , rn).

J. Duintjer Tebbens, M. Tůma 16

2. Balanced Incomplete Factorization

Consider the special choices of A0, (xk)
n
k=1 and (yk)

n
k=1,

A0 = sIn, s > 0, xk = ek, yk = (a(k))T−sek, ⇒ A = sIn+

n
∑

k=1

ek

(

(a(k))T − sek

)T

,

where a(k) denotes the k-th row of A. Then we obtain the identity

A−1 = s−1I − s−2UsD
−1
s V T

s ,

where the columns uk of Us and vk of Vs are computed as

uk = xk −

k−1
∑

i=1

eTk vi

sr
(s)
i

ui, vk = yk −

k−1
∑

i=1

yTk ui

sr
(s)
i

vi.

Clearly, Us is unit upper triangular.

J. Duintjer Tebbens, M. Tůma 17

2. Balanced Incomplete Factorization

For Us, Ds and Vs there holds [Bru, Cerdán, Marín, Mas - 2003]:

Us = U1, Ds = s−1D1, Vs = V1 − (s− 1)W,

where the columns of the auxiliary matrix W satisfy the recurrence

wk = xk −
k−1
∑

i=1

yTk ui

r
(1)
i

wi, k = 1, . . . , n.

In particular, W is, like U , unit upper triangular.

Now we have

A−1 = s−1I − s−2UsD
−1
s V T

s

= s−1I − U1(s
−1D−1

s)(s−1V T
s) = s−1I − U1D

−1
1

(

s−1V T − (1− s−1)W T
)

.

For s → ∞ this gives

J. Duintjer Tebbens, M. Tůma 18

2. Balanced Incomplete Factorization

A−1 = U1D
−1
1 W T .

This is the unique LDU decomposition of A−1 and U1 and W are its
triangular factors. Moreover,

U1D
−1
1 W T = s−1I − s−1U1D

−1
1 V T

s ,

i.e. by multiplication with s,

U1D
−1
1 V T

s = I − sU1D
−1
1 W T , i.e. V T

s = D1U
−1
1 − sW T

Pictorially,

V T
s =











. . . D1U
−1
1

. . .

−sW T
. . .











, diag(Vs) = D1 − sI.

J. Duintjer Tebbens, M. Tůma 19

2. Balanced Incomplete Factorization

From
A−1 = U1D

−1
1 W T

we have
A = W−TD1U

−1
1

We see that the matrix Vs computed during the ISM process contains the
factor W of the LDU decomposition of A−1 and the factor U−1

1 of the LDU
decomposition of A. For A symmetric positive definite this means that Vs

contains both the Cholesky factor U−1
1 = LT of A and its inverse

W T = L−1!

In [Bru, Marín, Mas, Tůma - 2008] the presence of the inverse Cholesky
factor is exploited for the construction of a robust incomplete factorization
called Balanced Incomplete Factorization (BIF). The main idea is to
mutually balance the dropping of entries in the Cholesky and inverse
Cholesky factor and control their conditioning in this way.

J. Duintjer Tebbens, M. Tůma 20

2. Balanced Incomplete Factorization

Denote by L the (exact) Cholesky factor of A and by L̃ an incomplete
Cholesky factor of A. Then a robust dropping criterium for L̃jk is

|L̃jk|‖e
T
k L

−1‖ ≤ τ

for some drop tolerance τ [Bollhöfer, Saad - 2002].

Reversely, if W̃ denotes an incomplete Cholesky factor of A−1, then a
robust strategy is to drop an entry W̃jk when

|W̃jk|‖e
T
k L‖ ≤ τ.

We will consider in the following balanced complete factorization, i.e. we
use the ISM process to compute the factors L and W without any dropped
entries.

J. Duintjer Tebbens, M. Tůma 21

3. Condition estimation

The main question is: How can the presence of the inverse factors in
Balanced Factorization be exploited ?

Perhaps the first thing that comes to mind, is to use the inverse triangular
factors for improved condition estimation.

We will see that exploiting the inverse factors for better condition
estimation is possible, but not as straightforward as it may seem.

J. Duintjer Tebbens, M. Tůma 22

3. Condition estimation

We assume A is real and positive definite symmetric. If

A = LLT

is the Cholesky decomposition of A, the condition number of A satisfies

κ(A) = κ(L)2 = κ(LT)2.

We focus on estimation of the 2-norm condition number of LT . This can
be done cheaply with a technique called incremental condition number
estimation. Main idea: Subsequent estimation of leading submatrices:

0

LT = ⇒ all columns are accessed only once.

J. Duintjer Tebbens, M. Tůma 23

3. Condition estimation

We will call the original incremental technique, introduced by Bischof
[Bischof - 1990], simply incremental condition estimation (ICE):

Let R be upper triangular with a given approximate maximal singular value
σmaxICE(R) and corresponding approximate singular vector y, ‖y‖ = 1,

σmaxICE(R) = ‖yTR‖ ≈ σmax(R) = max
‖x‖=1

‖xTR‖.

ICE approximates the maximal singular value of the extended matrix

R′ =

(

R v

0 γ

)

by maximizing
∥

∥

∥

∥

∥

(

sy, c
)

(

R v

0 γ

)∥

∥

∥

∥

∥

, over all s, c satisfying c2 + s2 = 1.

J. Duintjer Tebbens, M. Tůma 24

3. Condition estimation

We have

max
s,c,c2+s2=1

∥

∥

∥

∥

∥

(

sy, c
)

(

R v

0 γ

)∥

∥

∥

∥

∥

2

= max
s,c,c2+s2=1

(

sy, c
)

(

R v

0 γ

)(

RT 0

vT γ

)(

sy

c

)

= max
s,c,c2+s2=1

(

s, c
)

(

σmaxICE(R)2 + (yT v)2 γ(vT y)

γ(vT y) γ2

)(

s

c

)

.

The maximum is obtained with the normalized eigenvector corresponding
to the maximum eigenvalue λmax(BICE) of

BICE ≡

(

σmaxICE(R)2 + (yT v)2 γ(vT y)

γ(vT y) γ2

)

.

We denote the normalized eigenvector by

(

ŝ

ĉ

)

.

J. Duintjer Tebbens, M. Tůma 25

3. Condition estimation

Then with ŷT =
(

ŝy, ĉ
)

we define the approximate maximal singular

value of the extended matrix as

σmaxICE(R
′) ≡ ‖ŷTR′‖ ≈ σmax(R

′).

Similarly, if for some y with unit norm,

σminICE(R) = ‖yTR‖ ≈ σmin(R) = min
‖x‖=1

‖xTR‖,

then ICE uses the minimal eigenvalue λmin(BICE) of

BICE =

(

σminICE(R)2 + (yT v)2 γ(vT y)

γ(vT y) γ2

)

The corresponding eigenvector of BICE yields the new vector ŷT and

σminICE(R
′) ≡ ‖ŷTR′‖ ≈ σmin(R

′).

J. Duintjer Tebbens, M. Tůma 26

3. Condition estimation

Experiment:

● We generate 50 random matrices B of dimension 100 with the Matlab
command B = randn(100, 100)

● We compute the Cholesky decompositions LLT of the 50 symmetric
positive definite matrices A = BBT

● We compute the estimations σmaxICE(L
T) and σminICE(L

T)

● In the following graph we display the quality of the estimations through
the number

(

σmaxICE(LT)
σminICE(LT)

)2

κ(A)
,

where κ(A) is the true condition number. Note that we always have

(

σmaxICE(L
T)

σminICE(LT)

)2

≤ κ(A).

J. Duintjer Tebbens, M. Tůma 27

3. Condition estimation

0 10 20 30 40 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Quality of the estimator ICE for 50 random s.p.d. matrices of dimension
100.

J. Duintjer Tebbens, M. Tůma 28

3. Condition estimation

Now assume we have to our disposal not only the Cholesky
decomposition of A,

A = LLT

but also the inverse Cholesky factors as is the case in balanced
factorization, i.e. we have

A−1 = L−TL−1.

Then we can run ICE on L−T and use the additional estimations

1

σmaxICE(L−T)
≈ σmin(L

T),
1

σminICE(L−T)
≈ σmax(L

T).

In the following graph we take the best of both estimations, we display
(

max(σmaxICE(LT),σminICE(L−T)−1)
min(σminICE(LT),σmaxICE(L−T)−1)

)2

κ(A)
.

J. Duintjer Tebbens, M. Tůma 29

3. Condition estimation

0 10 20 30 40 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Quality of the estimator ICE for 50 random s.p.d. matrices of dimension
100.

J. Duintjer Tebbens, M. Tůma 29

3. Condition estimation

0 10 20 30 40 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Quality of the estimator ICE without (black) and with exploiting (green) the
inverse for 50 random s.p.d. matrices of dimension 100.

J. Duintjer Tebbens, M. Tůma 30

3. Condition estimation

An alternative technique called incremental norm estimation (INE) was
proposed in [Duff, Vömel - 2002]:

Let R be upper triangular with given approximate maximal singular value
σmaxINE(R) and corresponding approximate right singular vector z,
‖z‖ = 1,

σmaxINE(R) = ‖Rz‖ ≈ σmax(R) = max
‖x‖=1

‖Rx‖.

INE approximates the maximal singular value of the extended matrix

R′ =

(

R v

0 γ

)

by maximizing
∥

∥

∥

∥

∥

(

R v

0 γ

)(

sz

c

)∥

∥

∥

∥

∥

, over all s, c satisfying c2 + s2 = 1.

J. Duintjer Tebbens, M. Tůma 31

3. Condition estimation

We have

max
s,c,c2+s2=1

∥

∥

∥

∥

∥

(

R v

0 γ

)(

sz

c

)∥

∥

∥

∥

∥

2

= max
s,c,c2+s2=1

(

sz

c

)(

RT 0

vT γ

)(

R v

0 γ

)(

sz

c

)

= max
s,c,c2+s2=1

(

s c
)

(

zTRTRz zTRT v

zTRT v vT v + γ2

)(

s

c

)

.

The maximum is obtained for the normalized eigenvector corresponding
to the maximum eigenvalue λmax(BINE) of

BINE ≡

(

zTRTRz zTRT v

zTRT v vT v + γ2

)

.

We denote the normalized eigenvector by

(

ŝ

ĉ

)

.

J. Duintjer Tebbens, M. Tůma 32

3. Condition estimation

Then with ẑ =
(

ŝz, ĉ
)T

we define the approximate maximal singular

value of the extended matrix as

σmaxINE(R
′) ≡ ‖R′ẑ‖ ≈ σmax(R

′).

Similarly, if for a unit vector z,

‖Rz‖ ≈ σmin(R) = min
‖x‖=1

‖Rx‖,

then INE uses the minimal eigenvalue λmin(BINE) of

BINE =

(

zTRTRz zTRT v

zTRT v vT v + γ2

)

.

The corresponding eigenvector of BINE yields the new vector ẑ and

σminINE(R
′) ≡ ‖R′ẑ‖ ≈ σmin(R

′).

J. Duintjer Tebbens, M. Tůma 33

3. Condition estimation

Consider the same experiment as before.

We can combine the estimations from ICE and INE to improve the
estimator.

In the following graph we take the best of both estimations and display

(

max(σmaxICE(LT),σmaxINE(LT))
min(σminICE(LT),σminINE(LT))

)2

κ(A)
.

J. Duintjer Tebbens, M. Tůma 34

3. Condition estimation

0 10 20 30 40 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Quality of the estimator ICE for 50 random s.p.d. matrices of dimension
100.

J. Duintjer Tebbens, M. Tůma 34

3. Condition estimation

0 10 20 30 40 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Quality of the estimator ICE (black) and of ICE combined with INE (blue)
for 50 random s.p.d. matrices of dimension 100.

J. Duintjer Tebbens, M. Tůma 35

3. Condition estimation

Finally, if we assume we have to our disposal the inverse factors, we can
combine ICE with INE for both LT and L−T .

In the following graph we take the best of four estimations and display

(

max(σmaxICE(LT),σmaxINE(LT),σminICE(L−T)−1,σminINE(L−T)−1)
min(σminICE(LT),σminINE(LT),σmaxICE(L−T)−1,σmaxINE(L−T)−1)

)2

κ(A)
.

J. Duintjer Tebbens, M. Tůma 36

3. Condition estimation

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Quality of the estimator ICE for 50 random s.p.d. matrices of dimension
100.

J. Duintjer Tebbens, M. Tůma 36

3. Condition estimation

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Quality of the estimator ICE (black) and of ICE combined with INE and
exploiting the inverse (red) for 50 random s.p.d. matrices of dimension

100.

J. Duintjer Tebbens, M. Tůma 37

3. Condition estimation

Why this improvement ?

● In general, both ICE and INE give a satisfactory approximation of
σmax(A), though INE tends to be better.

● The problem is to approximate σmin(A), for ICE as well as for INE.

● The trick is to translate to the problem of finding the maximal singular
value σmax(A

−1) of A−1, which is in general done better with INE than
with ICE.

● This has an important impact on the estimate because σmin(A) is
typically small and appears in the denominator of σmax(A)

σmin(A) ,

We see that the main reason for the improvement is that INE tends to give
a better estimate of maximal singular values. And why is that ?

J. Duintjer Tebbens, M. Tůma 38

3. Condition estimation

Note: INE does not always give a better estimate of the maximal singular
value. But we have the following rather technical result.

Theorem [DT, Tůma - ?]. Consider condition estimation of the matrix

R′ =

(

R v

0 γ

)

,

where both ICE and INE start with the same approximation of σmax(R)
denoted by δ. Let y, ‖y‖ = 1 be the approximate singular vector for ICE,

δ = ‖yTR‖ ≈ σmax(R),

and let z, ‖z‖ = 1 be the approximate singular vector for INE,

δ = ‖Rz‖ ≈ σmax(R).

J. Duintjer Tebbens, M. Tůma 39

3. Condition estimation

Theorem (continued). Then we have superiority of INE,

σmaxINE(R
′) ≥ σmaxICE(R

′),

if

(vTRz)2 ≥ δ2(vT y)2 +
1

2

(

vT v − (vT y)2
)

(

α−
√

α2 + 4δ2(vT y)2
)

.

where α = δ2 − γ2 − (vT y)2.

Hence if δ2(vT y)2 + 1
2

(

vT v − (vT y)2
)

(

α−
√

α2 + 4δ2(vT y)2
)

≤ 0, then

INE is unconditionally superior to ICE (i.e. regardless of the approximate
singular vector z). Let us use the notation

ρ ≡ δ2(vT y)2 +
1

2

(

vT v − (vT y)2
)

(

α−
√

α2 + 4δ2(vT y)2
)

.

J. Duintjer Tebbens, M. Tůma 40

3. Condition estimation

To conclude we demonstrate the previous theorem.

● Assume that at some stage of an incremental condition estimation
process we have σmaxICE(R) = σmaxINE(R) = 1.

● Consider possible new columns v of R′ that have unit norm, i.e.
vT v = 1.

● Then (vT y)2 ≤ 1. The x-axes of the following figures represent the
possible values of (vT y)2 < 1.

● The y-axes represent values of γ2, i.e. the square of the new diagonal
entry.

● The superiority criterion for INE expressed by the value of ρ is given by
the z-axes.

J. Duintjer Tebbens, M. Tůma 41

3. Condition estimation

0
0.2

0.4
0.6

0.8
1

0
1

2
3

4
5
0

0.2

0.4

0.6

0.8

1

Value of ρ in dependence of (vT y)2 (x-axis) and γ2 (y-axis) with ‖v‖2 = 1.

J. Duintjer Tebbens, M. Tůma 42

3. Condition estimation

0
2

4
6

8
10

0
1

2
3

4
5
0

2

4

6

8

10

Value of ρ in dependence of (vT y)2 (x-axis) and γ2 (y-axis) with ‖v‖2 = 10.

J. Duintjer Tebbens, M. Tůma 43

3. Condition estimation

● Exploiting the presence of inverse factors combined with INE gives a
significant improvement of incremental condition estimation.

● This may be an important advantage of methods where inverse
triangular factors are just a by-product of the factorization.

● We did not consider sparse Cholesky factors, which ask for modified
ICE [Bischof, Pierce, Lewis - 1990].

● We did not consider exploiting the inverse in estimation of the 1-norm
and other non-Euclidean condition number.

J. Duintjer Tebbens, M. Tůma 44

Thank you for your attention!

Supported by project number IAA100300802 of the grant agency of the Academy of Sciences of the

Czech Republic.

	1. Matrix Inversion
	1. Matrix Inversion
	1. Matrix Inversion
	1. Matrix Inversion
	1. Matrix Inversion
	1. Matrix Inversion
	1. Matrix Inversion
	1. Matrix Inversion
	1. Matrix Inversion
	1. Matrix Inversion
	1. Matrix Inversion
	2. Balanced Incomplete Factorization
	2. Balanced Incomplete Factorization
	2. Balanced Incomplete Factorization
	2. Balanced Incomplete Factorization
	2. Balanced Incomplete Factorization
	2. Balanced Incomplete Factorization
	2. Balanced Incomplete Factorization
	3. Condition estimation
	3. Condition estimation
	3. Condition estimation
	3. Condition estimation
	3. Condition estimation
	3. Condition estimation
	3. Condition estimation
	3. Condition estimation
	3. Condition estimation
	3. Condition estimation

	3. Condition estimation
	3. Condition estimation
	3. Condition estimation
	3. Condition estimation
	3. Condition estimation
	3. Condition estimation

	3. Condition estimation
	3. Condition estimation
	3. Condition estimation

	3. Condition estimation
	3. Condition estimation
	3. Condition estimation
	3. Condition estimation
	3. Condition estimation
	3. Condition estimation
	3. Condition estimation

